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INTRODUCTION

This Is the final project report. fqr AFOSR grant 90-0307, Wavelets,

and Scattering. The original goals of this proposal Included:

"* Obtaining a better understanding of wavelets, including their strangths
and weaknesses In areas which lie in the mission of AFOSR.

"* Applying wavelets to electromagnetic scattering problems, ultrasonic
nondestructive evaluation, quantum optics, signal analysis and the
dispersive structure of the dielectric response of water.

Wavelets are very promising mathematical and computational objects. A
single function, together with its dilations (translations and scale changes),
generates a basis for function spaces used in many common physical situa,-
tions. Scale changes provide a multlresolution stricture which clearly and
concisely describes elements of a solution or operator at different frequencies
and thereby unifies diverse areas and applications. This facilitates the trans-
fer of methods and techniques among problems, which expains the appeal of
wavelet methods. Some ef their useful properties Include data compression,
noise reduction, edge detection, and feature extraction.
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In the next section, Publications, the 1994 publications which appeared,
are in press, or submitted are listed and comments are given on what has
been learned. In the section on Follow - On Projects, the next studies which
are made possible are presented. The last section gives the Conclusion.

PUBLICATIONS 1994

Welland:

Wl G. V. Welland and M. Lundberg Construction of Compact p-
Wavelets, Constructive Approximation, 9, 347-370(1993).

W2 R. Torres and G. V. Welland, The Helmholtz Equation and Trans-
mission Problems with Lipschitz Interfaces, Indiana Univ.
Math. J. 42, 4, 1457-1485.

W3 M. Mitrea. R. Torres and G. V. Welland, Regularity and approxi-
mation results for the Maxwell problem on C1 and Lipschitz
domaizn.s,. To appear in the proc. of conf. on Clifford Algebras held
in April 1993, (12 typed pp).

W4 M. Mitrea. Torres and G. V. Welland, Layer potential techniques
in electromagnetism, submitted to J. of lit. Eq. and Applic. (29
pp)

W5 S. K. Bhatia, V. Lakshminarayanan, A. Samal, G. V. Welland Pa-
rameters for Human Face Recognition submitted to J. of Visual
Communicaton and Image Representation

(26 typed pp)

DeFaclo:

DI C. R. Thompson and B. DeFacio, Two-dimensional image analysis
using the wavelet transform, in Inverse Problems in Scattering and
Imaging, SPIE 1767, Editor, M. Fiddy, (SPIE, Bellinghan WA) (1992)
120- 130.

D2 B. DeFacio and 5.-H. Kim, Non-uniqueness in direct and inverse
electromagnetic scattering theory, in Inverse Problems in Scat-
tering and Imaging SPIE 1767, Editor, M. Fiddy, (SPIE, Bellingham
WA, 1992), pp 21-30.
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D3 C.R. Th,.•son and B. DeFacio, Information-to-noise improve-
ment in the frequency domain using the wavelet transform,
in Inverse Problems in Scattering and Imaging, 1767, Editor, M. Fiddy
(SPIE, Bellingham WA, 1992) pp 131 - 146.

D4 D.M. Patterson, B; DeFacio, C.R. Thompson and S:P. Neal, Wavelets
and their applications to digital signal processing in ultra-
sonic NDE, in Rev. Prog. QNDE, Edited by D.O. Thompson and
D.E. Chimenti (Plenum, New York, 1993), pp 719 - 726.

D5 B. DeFacio, A. Van Nevel, and 0. Brander, Double simple-harmonic-
oscillator formulation of the thermal equilibrium of a fluid
interacting with a coherent source of phonons, International
Workshop on Harmonic Oscillators NASA Conf. Proc. 1621, Edited
by D. Han, Y.-S. KIm and W. Zachary (NASA, Greenbelt MD, 1993)
pp 309 - 322.

D6 S.-H. Kim, G. Vignale, and B. DeFado, Frequency and wave-
vector dependent dielectric function of water-like fluids, Phys.
Rev. A 46, 7548-7560 (1992).

D7 G.M. D'Ariano and B. DeFacio, A quantum wavelet for quantum
optics, It Nuovo Cimento B 108, 753-763 (1993).

D8 S.-H. Kim, B. DeFacio and G. Vigpale, Refractive index of water-
like fluids, Phys. Rev. E. 48, 3172-3175 (1993).

D9 B. DeFaclo, Coherent-state path-integrals and their relation to
wavelets, in a Festsdhift for J. R. Klauder, Edited by G.G. Emch,
G. Hegerfeldt and L. Streit (Springer-Verlag, New York, in press) 18
pp.

DIO S.-H. Kim, B. DeFacio and G. Vignale, The dynamic dieleltric
response of liquid water, submitted to Phys. Rev. E.

D1I B. DeFacio, S.-H. Kim and A. VanNevel, Application of Squeezed
States=Bogoliubov transformations to the statistical mechan-
ics of water and its bubbles, International Workshop on Squeesed
States and Uncertainty Relations, in NASA Conf. Proc. XXXX•
edited by D. Han, and M. Rubin, Y. Sbih and M.A. Man'kov (NASA,
Greenbelt, in press) 13 pp.
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D12 D.M. Patterson and B. DeFaclo, Wavelet Inversion of Data for
Elastic Wave Nondestructive Evaluation, in Inverse Optics
III, SPIE 2241, (SPIE, Bellingham, WA, in press), 13 pp.

D13 H. Kaiser, K. Hamcher, R- Kulasekere, W.-T. Lee, J.F.Anker, B. De-
Facio, P. Miceli and D. L. Worchester, Neutron Optics in Layered
Materials in Inverse Optics III, SPIE 2241 ( SPIE Bellingham
WA, in press), 12 pp.

FOLLOW-ON PROJECTS

" Continuation of work with ( McDonnell-Douglas Corp. CEM group);
Wavelet methods, matrix sparsening methods for 3-D elctromagnetic
scattering. (GVW)

"* Statistical mechan.ics of the dialectric response of water (BDF with G.
Vignale, Cai and Welland).

"* NDE using ultrasound, especially in composites, layered materials,
bond adhesion (with Martin-Marietta, Baltimore).

"* p-biorthogonal wavelet project with B. Jawerth with the boundary
adjustments for edge sets. (GVW)

"* feature extraction using wavelet packets for the development of a face
recognition system with the target system to be competitive with the
human capability for face recognition.

"* Novel dielectrics including microwave Penrose tiling structures, wire
structures, periodic arrays of spheres, honeycomb structures. The
band-gap or pseudo-gap, switching properties, defect and the disper-
sion will be studied for each of these new materials (BDF with Satpa-
thy).

"* Inverse Neutron Optics of Layered Materials (BDF with H. Kaiser and
D. Worchester).

CONCLUSION

The study of the frequency dependence of the dielectric response of water
is a first step towards a quantitative understanding of the propagation of
electromagnetic waves in tissue. Such understanding ii required to answer
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health and safety questions what are the responsibility of the Radiation
Analysis Division of the Laboratory at Brooks AFB in Texas. The squeezed
states developed for quantum optics will be studied for noise reduction in
NDE. It is expected that this work will enhance the collaboration of BDF
with scientists at Martin-Marietta. The study of bubble formation and their
decay addresses questions concerning the health and safety of ultrasound in
medicine, since these decays are either via shock waves, or initially high
velocity jets of gas and matter.

Numerical work based on multileveling, sparsening, and conditioning
methods are used in electromagnetic scattering problems which are very
difficult to resolve because of technical problems. The technical problems
derive from large high density matrices which require inversion. Large matri-
ces occur in cases for which there is a large ratio of the characteristic length
of the scattering body to wavelength of an illuminating source in problems
involving body element methods. This is at the heart of the collaboration
of GVW with Lou Mitschang, D.-S. Wang, et al. at McDonnell-Douglas
(MDA). This has been extended to the use of local SVD methods and the
use of wavelet packets to provide a controlled sparsening. The goal is to be
able to solve very large problems using sparsening techniques in conjunction
with other available methods or methods under development, while main-
taining an understanding of implications with respect to invertibility and
reliability of solutions obtained using sparsening techniques. These meth-
ods are. to be developed with the objective for more general applicability.
Other groups at MDA are involved in this project, e.g. the CFD group.

Methods using wavelet packets are being developed for application to a
machine based recognition system for human faces. This is the first step
in a project to obtain good representation of this class of images. One
must dearly distinguish recognition from identification. The goal of this
effort will be to develop a system that rivals the power of the human system
reported in the paper, Parameters for Human Face Recognition. The
methods will require registration of images through shifts and rotations,
which requires a generalization of existing methods. This problem gathers
together all of the ideas in the present project, and more.

These techniques will also play an important role in simulation of statis-
tical mechanics models and, in particular, in the simulation of the dielectric
response of water to electromagnetic pulses. Our studies are ongoing and
we are making substantial progress toward the goals stated above.

The studies completed, so far, have developed methods and understand-
ing which uniquely qualify the Pr's for these follow-on studies. The follow-on
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studies will incorporate refinement of analytic modeling of physical problems
and numerical simulation.

The publications and preprints listed in section 2 add to the understand-
ing of several problems of interest to the AFOSR.. The p-wavelets in (WI)
provides new possibilities for segmenting, compression and denoising signals
and one of us (GVW) is using these wavelets to study edge sets with Prof. B.
Jawerth. The papers on the dispersion of water, which appear in references,
[D6], [D8], [D10] and [D11] show established structures such as the Debye de-
crease in dielectric response function, and such potentially new effects which
have not yet been .xperimentafly observed such as the collective dipolaron
mode. A free rotfx peak was found in the far infrared frequency region at
exactly the frequihcy of the Simpson et al. peak which was experimentally
reported, but had not been obtained in other theoretical models. However,
the peak which was found was much too large and quantitative agreement
has not been obtained. The dipolaron, if correct, would totally change the
accepted nature of the relaxation mechanism. This collected mode cannot
be ruled out by the data which exists today.

The publication listed under [D7] presented one operator-valued wavelet
in quantum optics. There are two kinds of low-noise quantum states in op-
tics, coherent states and squeezed states, and it is well known no additional
such objects are possible. In a group theoretic approach, the coherent state
is a translation in Fock space. In this paper, the scale change of wavelet
theory is shown to be implemented by the squeeze operator. This opens
several paths for study of noise in scattering, in addition to optics.

The publications listed in [D4], [D12] and [D13] apply wavelet analysis
to inverse scattering of elastic waves for NDE and to glancing angle ther-
mal neutrons from layered materials including both high technology metal
composites and lipid bilayers.

We take the opportunity to point out that Brian DeFacio was elected to
Fellow of the American Physical Society in November, 1993.

We have not applied nor obtained any patents. We have made no in-
ventions. The support of this research by AFOSR. is greatly appreciated by
both of the Pi's.

Brian DeFacioo Grn eln
Professor Professor
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Inverse Problems in Scatterint and Imainf
SPIE 1767 - 4, San Diegp, CA, July 19-22, 1992

Non-uniqueness in direct and inverse electromagnetic scattering theory

B. De Facio and S.-H. Kim

Missouri University, Department of Physics
Columbia, MO 65211

Abstract

General statements of impossibility can be important in science and en-
gineering. Ambiguities in inverse problems are cases of non-uniqueness where
classes of different objects give the same response. A strong ambiguity is one
which no additional data will remove the non-uniqueness, whereas a weak
ambiguity is one which can be removed by additional data. In direct scat-
tering theory, differe-t potentials with one or more trapped modes may give
the same R(I) or the eý&R(k) where a is a real parameter at all wave-numbers
k. In three-dimensional direct scattering theory, different material media and
sources f, p give the same scattering matrix at all times (or wave numbers)
at all scattering angles and all incident angles. Examples of strong ambigui-
ties will be given including one where a temporal relaxation of a homogeneous
body is equivalent to a totally different time-independent homogeneous body.
Weak ambiguities will be presented including both examples of incident scat-
ters. The conditions on the scatterers at spatial infinity and their trapped
mode bound-state structure will be given.



1. INTRODUCTION

The objective of inverse problems'- 4 is to study families of models for solutions in a
known class, which are amenable computation. Given a set of noise-free data the question
is which, if any, stable solution exists in the class, is it unique and how it can be calculated
to a useful accuracy (in a reasonable amount of time on an available computer). If the
data set is "too small" because of sampling or band-limiting, or if the signal is corrupted by
noise, the problem becomes ill-posed. An ill-posed problem has a solution which depends
discontinously on the initial data, so that it is also unstable. Most of the interesting applied
inverse problems are ill-posed. At the 1979 Delaware Symposium on Ill-posed Problems,
P.C. Sabatier defined interesting inverse problems as those which are ill-posed.

The class of models studied in this paper will be restricted to those in which the elec-
tromagnetic scattering of objects is described by Maxwell's equations in second order form.
The class of non-uniqueness studied here was first discovered by Sabatiers-5 in geophysical
acoustic scattering and generalized to electromagnetism by De Facio'. Corones and Winter1°
studied the related homogenization properties of a scalar electomagnetic slab (1-d) problem
using splitting methods. These ambiguities clarify the proofs of uniqueness for electromag-
netic waves which are found in refs. (11 - 13). Sabatier's work was focused on discontinuities
at interfaces between media. Strong dispersion is a fundamental property of the dielectric
response of biological solutions",15. Inverse problems in these dispersive media were reviewed
in ref. (15). The physical origins of dispersion includes:

(1) non-trivial time fluctuations produce frequency w dependence, called temporal disper-
sion, upon Fourier transformation,

(2) non-trivial spatial variation in an object gives wave-number k dependence, called
spatial dispersion, upon Fourier transformation.

It is the temporal dispersion which is already well known to be important in biomathematics
and at present the spatial dispersion has not yet been established experimentally. It will.

The identification of two distinct sets of coefficients with the same scattering amplitude
in the direct problem is an ambiguity for the inverse problem.

Three dimensional inverse problems are highly overdetermined and the exact data set
which is to be used requires careful consideration. For this reason, following Sabatier3, non-
uniqueness will be classified as a strong ambiguity if no possible additional data will remove
it and as a weak ambiguity if there is possible additional information which will remove it.
For example, near field information of the scattered field would remove the ambiguity given
in ref. (16) but not that of ref. (17). If it is possible to measure the near field response, ref.
(16) is a weak ambiguity and ref. (17) is a strong ambiguity. If this is not possible, then the
objects in both references become strong ambiguities.

It is also possible to use specific examples of ambiguities to check the correctness of
electromagnetic scattering computer programs, as pointed out by Dr. T. Roberts"8 .

The organization of the rest of this paper is to present the Theorectical Framework in
Sec. 2, Examples of the homogenenization, scaling ambiguities are presented in Sec. 3 and
the Conclusions are given in Sec. 4. The Acknowledgements and References follow as Sec.
5 and 6, respectively.



2. THEORETICAL FRAMEWORK

A classical, linear electromagnetic wave at frequencies below 1013 Hz satisfies Maxwell's
equations in Minkowski form1 ':

j -A = 0, (1c)

X# + (1d)

The linear, isotropic, stationary constitutive relations are:

13ef ed + 1 (2a)
= = + PR (2b)

and
f art (2c)

where (P, 12) are the electric polarization and the magnetization in matter and (e, i, or) are
the permittivity, permeability and conductivity of the matter. The electromagnetic field pair
(b, ff) has continuous normal componenets, the electric field P has continuous tangential
components and the magnetic intensity / has coninuous tangential components except for
the idealized (a -- oo) a perfect conductor where the discontinuity in A at the interface [ff]
has the non-zero value

fil = [if] = k, (3)

where kj is the surface current density.

The model to be studied here0 is an electromagnetic pulse (t 0 , R0) emitted in direction
i E S2 in a linear, isotropic, homogeneous, stationary (LIHS) medium fl toward an obstacle
which is either a wavy collection of layers or a collection of compact regions fl2, f!3, "', f1N+1
where

f12 C f03 C... Cf1N+1 CR 3. (4)

The constitutive parameters (ei, p•, o'r) and shape characterize points in each fl,. Only 01l
is LIHS although f12 ... flN+1 will be taken as isotropic and stationary for simplicity. The
inhomogeneity can be spatial or temporal or both. If the electromagnetic fields and sources
(p,, fi) are in certain uniformly continuous H5lder spaces given in Colton and Kress1 2 and
used in ref. (9), then the scattering amplitudes all exist. The scattered fields (f, A) are
given in ref. (9) decomposed into pure volume integral terms were called diffuse reflectors;
surface terms integrated over discontinuities in [e], [i] or [a] were called soft reflectors; and
surface terms over gradients of discontinuous material parameters were called had reflectors.
The terminology was taken from geophysics. One consequence of this decomposition is that
a fixed frequency pulse cannot distinguish amoung these three effects, whereas the high
frequency part of a wide-band (narrow time) pulse will measure only the hard reflectors.

It is well-known that variable-coefficients partial differential equations (pde's), without
analytic coefficients, are poorly understood even in their existence, uniqueness and stability
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properties. The simple addition of spatial or temporal dependence adds two classes of pos-
sible non-uniqueness, that of homogenizion and that of Sabatier scaling. The Sabatier
scaling may be discontinuously or dispersion dependent and both classes can give either
stig or wvd ambiguities.

The Sabatier scaling for the present modelsO involve two functions (e., p.) which can
depend on t, Z or both. However, it was shown' that °.p. = 1 is required. The t-dependence
is particularly important for water and biological models in the microwave frequency range
and has been the subject of much less investigation than the 2-dependent case. For the
electromagnetic fields (13, 9, 0, A) and their sources (p,, $f), the Sabatier scaling gives a
set of fields (B3, P-, f~, A-) and sources (p-, ,•) defined as

5-~ = P3= j, (58)

S_ =.,(Sb)Co

#~= •,l, (5c)
A~ = •,•., (5d)

with I = 1 (pointwise). These scaling functions correspond to the multiplicative inverses
of those in ref. (9), L, (here) = l/e. (ref. 9), etc. The constitutive functions (E,, p•, a,) and
the scaling function p. can depend on t alone, 2 alone or t and 2. The scaling for the sources
(pf, ff) is given by

P7 = PIaI- (6a)
C.e

and
17 = p.sm. (6b)

We will deviate from ref. (9) by using a single scaling function, which one of us (S-HK)
found to exhibit the structure in a clearer manner. Note that for non-trivial scaling 1,(.) # 1
in the interior of n, (i # 1) and a. = 1 (pointwise) everywhere in ,.

The homogenization occurs when (ei, pi, oJ) are functions of t or f and
Rost-homogenization ambiguities occur when the scale transformations of eqs. (5a - d) are
applied to Maxwell's equations. There are two general properties of the Sabatier scaling of
Maxwell's electromagnetism which will be presented next.

Lemma 1. The pairs ($f, A) and (Jfr, f-) have the same conductivity in this model, for all

scaling parameters p°.

Proof Using (5b) and (6b) in eq (2c)

.4= oa = E -.J = Crest

Lemma 2 If the scaled fields (P-, I?-) inside f0 (i # 1) could be measured, all scaling ambi-
guities would be weak ambiguities.



Proof The Poynting vector for real fields (P, A) and (f-, A-) are given by

and

Therefore,
•..= ,,(gx A) = •',

for i•o # +. U

Remarks

(1) On page 865 of ref. (13), a correct observation is made that different conducting
dielectrics can have the same pointwise Maxwell equation solutions. The authors seem
unaware of ref. (9) which includes this result as a special case. An elementary example
will be given in the next section. Lemma 1 shows why this can occur structurally
because one conductivity can correspond to different pairs (ff, P) and (f7, f) which
are solutions to Maxwell's equations.

(2) The Poynting vector § is the power per unit area flowing in the direction of g at a
point Z. The condition 9 :0,~ shows that a different power flows inside Ol (i 4 1) even
though the external fields are identical. However, this lemma is inapplicable to remore
sensing, astronomy and many objects of interest, such as inside a nuclear reactor because
observations inside the object are impossible.

In the next section, the ambiguities will be given.

3. AMBIGUITIES

First, the homogenization structure of Maxwell's equations will be given for two cases:
(A2, E2) depend only-on time and then (62, e2) depend only on space. The conductivity a is
carried in ff. The space dependent case has been far more frequently studied by authors.

Assuming (e2, P2, a2) depend only on time t and taking the curl of eq. (1b), it is
straightforward to use eqs. (1c), (1d) to obtain:

At- A1lel - -) + 09(p 2ff) + [((p2e2 -se)+ (0t(1J2i2))AI + (#t2E2 + 202 i2)A (7a)

after adding a background term -e1 l1 A to both sides. Notations of A, i2 are used for partial
derivatives with respect to time of a single vector or scalar, O,(p2ff) is used for products and
A is the Laplacian operator. A similar calculation for A gives

Af- ;&1e1A ft~'~' ) - xý X f + [(A2C2 - PlE1 )A - (Dtji2 f2))A' + (pMi 2 + 2jL2ft)A (7b)



Next anume that (", pI, v2) depend only on space 1, it is easy to take the curl of eqs.
(Ib), (Id) and to rearrange into

A -19IJi a~*A + g2if, + [(00E2 - Plel)AJ + ('ý02) X A(8a)
and

The coupling between A and R in eqs. (8a), (8b) cannot be removed for general (p2, e2).

At fixed frequency, the terms

'(. A) = -L[PTI, (9a)

-L~I4) =

= -N[2!z.1, (9b)

where eq. (1c) was used in eq. (9b) and PT is the total charge density (bound plus free) can
mix with additional terms to provide ambiguities. It is clear from eqs. (7) and (8) that fixed
incident (i.e. scattering) contains little information on the details of the obstacle f12 .

For a metal or a conducting dielectric the time dependent (E2, P2, '72) case the right hand
side is either equal to or contains a term

[RHSI = 0,(2fi4)

= (1'2J +pA2j 1 )'b (10a)

Samph. . A simple calculation shows that the pairs (920, ffo) and (p21, f, ) are ambiguous,
and the first pair gives a homogenization of the second when the directions of Jfo, f$I coincide
and

Po20 1

P21 = e-30lti/2

J - e=1fl/ 2. (10b)

Calculating

L99(S21 Jf 0 = A2 1 JfI + 1121if

= [(T + )e - e

= -•--iO" = 09(#2oJfO).

Therefore, the pairs (p:, JI) = (1, •-0191/ 2 ) and (e-30191/ 2 , eC0'l/ 2 ) are ambiguous and the first is
homogeneo-is in time.



Remark
The decay e-01I1 is of Debye type which is observed in polar liquids (including H20 and

biofluids). It is only _roducts of first time derivativesof ON and fJ,. which must have decay
faster than o(1/t) at large times for scattering theory to be well-defined. The corresponding
magnetic field /1 behaves consistently since i x f4 is perpendicular to Aj and ý .- is set by
continuity of the tangential fields. This gives a specific example of the ambiguity mentioned
in ref. (13).

We have been unable to construct similar examples for perfect dielectrics and in simple
cases such as Debye's exponential time dependence times a polynomial or a Guassian time
decay times another polynomial for f2 and f gives uniqueness when the uniform Halder
continuity at the boundary is taken into account. Since this occurs in such limited class of
dielectrics and fields it will not be presented here.

The examples homogenization from spatially dependent constitutive functions are espe-
cially anisotropic because of terms such as (j#,2) and (ef2). Limited angle scattering is even
more questionable than usual for these profiles. Pure metals and perfect dielectrics with
only spatial dependence with continuous boundaries satisfy Mller's uniqueness theorm"
and this can be relaxed to Lipschitz continuous at the boundary with exponent a, 0 < C < 1,
using results from Colton and Kress12. Hence, any fixed angle of incidence or limited angle
ambiguity is weak and easily removed.

Now, the scaling structure will be given by substituting eqs. (5a - d) and eqs. (6a, b)
into Maxwell's equations. Again the curl of the curl equations will be rearranged using the
assumption that (P2, E2 ) depend only on time or space separately. For time dependence only,
the electric field satisfies the wave equation

z~- pi•, = A(. A) + .. *( f7) + (2 E2 - •I•e) I• + [A2e2 + 2p22 - 12C2

+ [(ifi2 + 0242) - j 2 .+ 2p2iO)A' - 02C2 { - 2(A.)2 (1a)

and the corresponding magnetic field satisfies the wave equation

L~~~iP~~~' -lffk =ý + (pU2C2 - PiFIl'~' + [2i2 + 2 A2E2 -202C2 A.&

[(JA2i2 + jA2 f 2) - Ofti2+24O W - T-2( f (11b)

The structure of Maxwell's equations gives a somewhat simpler, more symmetric, pair
of equations for the case of a spatial dependent scaling function, p.(Z). The substitution of
the scaling equations in eqs. (5), (6) into Maxwell's equations gives the pde for the electric
field as

Il"t-I 1'4P = '1'~+PJ7+(PE - 1 [ (12a)Pa Pa

The pde which the magnetic field satisfies is

-e2, -X[-•(¶P.)x/]-[Ve 2---- (VPa)Jx• •(12b)PaPa&



The coupling between the electric and magnetic fields in eqs. (12a, b) is identical to those

in eqs. (8a, b).

The time-dependent scaling case is richer than homogenization case.

ExamRle 2 To eliminate the dissipation in the electric field 2 in the general case of time
dependent scaling with (ft,p2) time dependent only, eq. (Ila) requires that

#2E2 + 2P2 i 2 - 2p 2e£2 L = 0.
As

Since 02C2 # 0, it can be divided through the previous equation to give

+2i 2- =0.
0L £2 Pe

This can be integrated directly to yield,

P.(t = C3l/i13 2 (t),2(

which is the most general scaling allowed for (e2,p2) dependent on time only.

Similarly eq. (1lb) is dissipation-free for A if

P2 i 2 + 2A2E2 - 2p2C2 !L. = 0
Pa

which can be solved the same way to give the most general scaling for dissipation-free R as

A.(t) = C4 A (t)0

It is also possible to have a weak ambiguity where additional measurements can restore
uniqueness.

The space - dependent scaling case is complicated and coupled.

Example 3 The condition of dissipation-free fields when (p.,,u/2,E2) depend on space only can
be solved in general. From eq. (12b)

E2 P

if C2E. 9 0 then this equation can be integrated directly in the direction of the gradients to
obtain

e2M1(f)a) = C1

for each c1 e R1. Hence, there are ambiguities for dissipation-free propagation.

The existence of trapped modes for an obstacle, at least in two space dimensions, can
be described by repeatedly performing Darboux transformations on a scattering operator



for the object without any interior eigenvalue. Each transformation produces a factor of
modulus one in frequency domain,

k - iAj

so that N applications gives

fl(k +iA 3 ) o'(. *~ (13b)

j=1k-A

In terms of the initial reflection operator Pe(k), the same obstacle with N-trapped interior
modes becomes

RN(k) = e'(C° +"+ °OR(k) (13c)

where Aj is the wave number of the j"1 trapped mode. The Fourier transform of eq. (13c)
with ck = w gives the time-fomain reflection operator. Thus an arabiuity occurs if only the
modulus squared of the reflection is measured. It is a weak ambiguity for a classical wave
because if the wave amplitude is measured the phase can be determined.

4. CONCLUSIONS

The non-uniqueness of the time-domain electromagnetic scattering problem was dis-
cussed. Two kinds of non-uniqueness for inverse problems, a a!= ambiguity which cannot
be removed by additional measurements and a weak ambiguity which can be removed by
appropriate additional data were discussed and a few examples were given.

In electromagnetic inverse scattering theory a recent paper by on of us, BDF', was sim-
plified and discussed. Working with one scaling function led to nicer equations but two were
required to show that only one of them is independent. Two general features involving the
Poynting vector of scaled interior solution g~ and another showing the invariance of the
conductivity under the scaling transformations. This actually explains an observation of
Kabanikhin and Lorenzi13. The difference in ambiguities due to different non-constant coef-
ficient functions, called homogenization, and ambiguities due to scaling, called the Sabatier
scaling or electromagnetic impedance, were derived and examples were presented. Finally,
these examples have the potential to act as checks on the correctness of computer programs
for electromagnetic scattering.

It would be interesting to use new technological tools such as molecular beam epitaxy
(MBE) to use these ideas to attempt to fabricate new non-dissipative materials. Biological
entities may already be using the idea in Examples 2 and 3.

Electromagnetic scattering with variable permitivity, permeability and conductivity is a
rich enough model that the surface is barely scratched.
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